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Abstract—Sustained work enthusiasms of drivers are crucial
for the success of large-scale ride-hailing platforms. In this paper,
we conduct the first-of-its-kind exploration to encourage active
participation of drivers via competition. We design Arena, a
competition where drivers compete for prizes via completing
more trips. Through a pilot study covering over 2,600 partic-
ipants, we uncover the easy-win problem, an overlooked and
serious issue in competition design for real-world drivers. It refers
to situations where one competitor does not show up during
competition whereas the other easily wins. To solve the easy-win
problem without impairing motivation of drivers, we devise a
novel prediction-based matchmaking framework. On observing
that no-shows are highly correlated to the online time of drivers
during competition, we propose to identify potential no-shows by
predicting drivers’ online time and avoid matching potential no-
show drivers with drivers that will show up so as to reduce
easy-wins. We conduct large-scale experiments based on real
competition data involving over 10,000 drivers. The results show
that our prediction-based matchmaking scheme can effectively
reduce the ratio of easy-wins.

Index Terms—Spatial Crowdsourcing, Competition, Case
Study

I. INTRODUCTION

Ride-hailing services have gained unprecedented popularity

due to its flexibility brought to the transportation industry.

Large-scale ride-hailing companies such as Uber and DiDi

have 3.9 million [1] and tens of millions [2] of drivers

registered worldwide, respectively, where drivers can complete

trips at will as long as their total driving time does not exceed

the limit within a day. Such flexibility tends to result in

relatively short working hours of drivers. According to some

recent reports [3], more than half of UberX (the most popular

product of Uber) drivers only drive for less than 15 hours

a week, and the proportion of driving less than 35 hours a

week is 83%. DiDi also experiences a similar situation, where

50.67% of drivers are online for less than 2 hours a day on

average according to a report released by DiDi in 2017 [4].

The short service time of part-time drivers is likely to induce

shortage in drivers especially during rush hours, an unwanted

situation for both the ride-hailing platforms and the passengers.

To consistently provide sufficient ride-hailing services, the

platforms need to encourage their drivers to complete more

trips via various incentives. For instance, dynamic pricing

mechanisms [5], [6] have been explored to dynamically bal-

ance demand and supply. Many non-monetary incentives have

also been adopted. For example, Uber Pro [7] is a rewards

program that gives more rewards to higher-status drivers.

Drivers needs to drive more and give better service to earn

a higher status.
Competitions have proven an effective incentive mechanism

to boost players’ performance [8], [9], [10], [11]. As the first-

of-its-kind exploration, we introduce competitions into a ride-

hailing platform and design Arena, a system that enables

multi-round competitions among drivers where the driver who

wins more rounds can get a bigger prize. Our vision of such a

mechanism is threefold, i.e., drivers will obtain higher income

by completing more trips, passengers will find it more easily

to be picked up when drivers are more willing to drive, and

the platform will be better off with the increased satisfaction

of both drivers and passengers. Through a pilot deployment

of Arena in 3 cities where over 2,600 drivers participated

in the competitions, we find that although competitions do

motivate drivers, drivers who register for competitions are

not guaranteed to attend each round as expected, leading

their opponents to easily win some rounds. We call such a

phenomenon the easy-win problem. Our pilot study shows an

unexpectedly high easy-win ratio of 30% to 50%, which will

severely impair the motivation of drivers and the effectiveness

of competitions.
The identification of the easy-win problem reveals some-

thing important to take into consideration when applying

competition-based incentive mechanism on ride-hailing plat-

forms, or more generally, spatial crowdsourcing applications.

To mitigate the easy-win problem without harming the moti-

vation of drivers, we propose a novel prediction-based match-

making scheme. The idea is to predict the online times of

drivers in a future round, and only match drivers with similar

predicted online times to avoid matching potential no-shows

with drivers that will show up based on the predictions. We

harness heterogeneous data and a Seq2Seq [12] model for

accurate driver online time prediction. Experiments based on

the data of two real-world competitions held in two different

cities demonstrate the effectiveness of our proposed method.
The main contributions of this work are as follows:

• We design and deploy Arena, the first-of-its-kind com-

petition for drivers of ride-hailing platforms. Through a
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pilot study in 3 cities covering over 2,600 drivers, we

observe the easy-win problem, a phenomenon largely

overlooked in competition designs in other application

domains yet may severely affect the effectiveness of

competition designs for real-world drivers.

• We propose a novel prediction-based matchmaking

scheme to mitigate the easy-win problem. Evaluations

based on the data of two real-world competitions in two

cities involving about 10,000 participants show that our

proposed method can effectively reduce the ratio of easy-

wins by up to over 20 percentage points compared with

the baseline method.

The rest of this paper is organized as follows. We review

related work in Sec. II, present the initial design of Arena
and identify the easy-win problem through a large-scale pilot

study in Sec. III, and introduce our solution to the easy-win

problem in Sec. IV. In Sec. V we show the evaluation results

and we conclude in Sec. VI.

II. RELATED WORK

Our work belongs to one category of incentive mechanisms

for crowdsourcing, and our solution relates to the research on

user activity prediction. We briefly review the closely related

studies below.

A. Competition-Based Incentive Mechanisms in Crowdsourc-
ing

In the research field of crowdsourcing, incentive mechanism

design attracts much interest because the participation and

retention of workers directly affect the viability of the crowd-

sourcing market. Recently, gamification has been a popular

means to enhance user engagement in an activity [13], [14].

Without designing a fully-fledged game, gamification achieves

this by incorporating some game elements into the application

[15]. Typical such elements include points, badges, levels and

leaderboards [13]. Gamification has already been effectively

employed in crowdsourcing to increase the motivation of the

participants [16]. There are both theoretical and experimental
studies on competitions in crowdsourcing.

Competitions are often studied theoretically in contest the-

ory [17]. In general, a contest is modeled as an all-pay

auction in a game-theoretic framework. Theoretical studies

typically focus on analyzing the equilibria of contests [18],

[19] and designing optimal prize allocation mechanism to

maximize expected total effort or maximum effort [20], [21]

under different contest models and assumptions. With the

rise of crowdsourcing, many crowdsourcing scenarios where

multiple workers compete for the reward of a task can be seen

as contests. The design of crowdsourcing contests has been

researched extensively [22], [23], [24]. Our work is different

from these theoretical studies from the following two aspects.

(i) In our work, the spatial crowdsourcing itself is not a contest

since each trip is assigned to only one driver and drivers do not

compete for a certain trip. Contests are used to motivate drivers

as a supplement of the fare they earn from trips. (ii) Most

theoretical results may not fit for real-world applications. For

example, the optimal prize function in [24] is in a complicated

non-closed-form expression and it is derived based on many

assumptions. In contrast, we focus on adoption of competition

design in real-world applications.

Among the experimental studies, Feyisetan et al. [8] find

that game elements, including points and leaderboards, can

improve the accuracy while reducing the cost in image labeling

experiments. To explore the effects of reward distributions and

information policies in competitions, Rokicki et al. [9] conduct

large-scale experiments on Amazon Mechanical Turk to collect

annotations for datasets. They find that the best design is to

award several top users unequally and reveal close scores of

other users to each one. Our work also focuses on practical

problems that stem from real-world deployments. Particularly,

we uncover the easy-win problem, which is largely overlooked

but significantly affects the effectiveness of adopting compe-

titions among real-world drivers.

B. User Activity Prediction

In customer relationship management (CRM), one important

problem is predicting the future activity of customers/users.

A related topic is churn prediction which aims to find out

users who are likely to leave the supplier/platform in advance

such that some actions can be taken to motivate them to stay

[25], [26]. User activity prediction has been studied in different

areas ranging from social networks [27] to telecommunication

[28]. In social networks, the prediction can help the platform to

deicde which users should be given new services, free e-gifts,

etc. [27] in order to keep them active in the future. Zhu et al.
[27] propose a method based on logistic regression, which

incorporates personalization, dynamics and social influence,

to predict whether a user will be active in the social network

during the subsequent week. In telecommunication, the ser-

vice providers can benefit from predicting user activity level

because the service providers can adjust their management

strategies to retain profit based on the prediction [24].

Our prediction method is not designed for driver churn

analysis, but serves as an optimization component of the

competition system. Most existing studies [24], [27] of user

activity prediction only predict whether a user will be active or

inactive in the future (i.e., a classification problem), however,

in our work, we predict the online time of drivers in the future

(i.e., a regression problem). In addition, we need to predict

the online time of drivers in multiple hours (i.e., multi-step

prediction) while most existing studies [24], [27] only focus

on one period in the future, e.g., one day or one month (i.e.,
single-step prediction). The prediction in this paper is more

challenging due to both the finer granularity in time and the

multi-step nature of the problem.

III. MEASUREMENTS AND OBSERVATIONS

In this section, we introduce Arena, a competition designed

for drivers of ride-hailing platforms (Sec. III-A). Through

measurements from real-world deployments, we show the

problem of easy-win, a phenomenon largely overlooked yet
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crucial for the effectiveness of competition design for drivers

(Sec. III-B).

A. Arena: Initial Design and Deployment

Arena is a competition organized among drivers of ride-

hailing platforms. It serves as a gamification incentive for

drivers to complete more trips, so as to improve the profit

of both the drivers and the ride-hailing platform. Towards this

goal, the competition content of Arena is aligned with the

daily work of drivers, i.e., drivers who complete more trips

win. Fig. 1 illustrates the core workflow of Arena. We explain

the details of each component as follows.

Registration

Matchmaking

Competing

Prize giving

Fig. 1: Arena overview and a screenshot of an Arena
competition held on drivers’ mobile app.

• Registration. A competition is released to eligible drivers

through drivers’ mobile app (see the screenshot in Fig. 1).

An eligible (a.k.a whitelist) driver has to register to join

the competition. Registration begins several days before

the competition to attract more drivers.

• Matchmaking. In each round, the platform needs to find

an appropriate opponent for each driver. According to the

theory of two-player standard all-pay contest [17], we

should match drivers of similar ability to maximize their

total effort. Hence in Arena, we perform matchmaking

only among drivers who completed almost the same

number of trips in the last 30 days before the competition.

• Competing. Each competition lasts for several days and

consists of multiple rounds. Each round lasts for multiple

hours, typically during peak hours. In each round, the

matched drivers will complete trips from the ride-hailing

platform. The platform will give each driver a score

proportional to either the total number or total fare of

the completed trips. Drivers are expected to compete for

a higher score to win a round. A draw occurs when both

drivers get no score.

• Prize Giving. After all rounds of a competition, a driver

gets a prize according to the rounds of wins in the com-

petition based on the prize allocation rule. For example,

in the completion shown in Fig. 1, a driver will get 25

TABLE I: Impact of competitions on the number of completed

trips.

City Group # drivers Change Growth

City A
Experimental 569 21.03%

27.14 pp
Control 500 -6.11%

City B
Experimental 1807 26.39%

23.09 pp
Control 2000 3.30%

City C
Experimental 278 30.64%

25.43 pp
Control 300 5.21%

CNY for winning any 3 rounds, or 70 CNY for winning

any 6 rounds, or 300 CNY for winning all the 9 rounds.

As a pilot study, we deployed Arena in three Chinese cities

of different scales in June, 2018, and organized 3 competitions

consisting of 24 rounds involving over 2,600 drivers. The

concrete parameters e.g., number of rounds in a competition,

duration of a round, prize allocation rule, etc. are heuristically

set for the competitions in each city. Note that the focus of

the pilot study is not an exhausted search on the optimal

competition design that maximizes participation of drivers or

profit of the platform, but the first-of-its-kind exploration of

adopting real-world competitions as an incentive for drivers.

Table I summarizes the impact of competitions on the

total number of completed trips. The experimental group

are drivers registered in competitions. For comparison, we

randomly select drivers from the same city at roughly the

same scale as the control group for each competition. For

each group, we count the number of completed trips during the

competition as well as the number of completed trips in the

same periods of the same days a week before the competition.

For example, the competition in City A was held from June

7, 2018 to June 9, 2018 with 3 rounds, each lasting for 3

hours, every day. The periods for comparison are the same

9 hours from May 31, 2018 to June 2, 2018. The change

in Table I is calculated as the difference in the number of

completed trips during and before competitions for each group.

The growth is calculated as the difference between the change

of the experimental group and that of the control group. As

shown in Table I, the growth between the experimental and the

control groups are significant (from 23.09 to 27.14 percentage

points). It suggests that competitions can encourage drivers to

complete more trips, and thus potentially increase the profits

of both the drivers and the ride-hailing platform.

B. The Easy-Win Problem

Although competition seems to motivate drivers to complete

more trips (see Table I), a closer investigation on the participa-

tion behaviors of drivers reveals a high rate of no-show during

competitions and correspondingly a high easy-win ratio, which

may severely impair the motivation of drivers and decrease the

profit of the platform.

1) Easy-Win: An easy-win occurs when one driver gets no

score. In this case, the other driver can easily win that round.

To quantify the severity of easy-win, we calculate the easy-win
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ratio of each competition held in our pilot study. It is the ratio

between the number of easy-wins and total number of driver

pairs in a single round or an entire competition. Table II shows

the easy-win ratios of the competition held in City A (The

other two competitions exhibit similar or even higher easy-

win ratios). The winning status of a driver in a single round

can be classified into three categories: easy-win, normal-win

and draw. A normal-win occurs when both drivers get non-

zero scores while a draw occurs only when both drivers get

no score as mentioned above. In Table II, the others include

normal-wins and draws.

From the table, we can observe that in most rounds, the

easy-win ratio is higher than 40%. Furthermore, the compe-

tition covers workdays and weekends, as well as different

periods of a day. The easy-win ratio remains high despite

what day the competition is held, and seems irrelevant to the

periods of a day. In summary, a high easy-win ratio tends to

be ubiquitous in the competitions held by Arena.

2) Impact of Easy-Win: While easy-wins are not unique in

competitions for drivers, a high easy-win ratio may weaken

the motivating effect of competitions and decrease the profit

of the platform.

To show the impact of easy-wins on drivers, we plot the

distributions of winner’s score in cases of easy-wins and

normal-wins. Due to the limited space, we only show the

results for City B (Fig. 2 left). The teal area represents the

distribution of winners’ scores in cases of normal-wins of the

competition while the orange area represents the distribution in

cases of easy-wins. We can observe that the scores of winners

in cases of normal-wins tend to be higher. Using Welch’s t-test,

we find that such differences between the winner’s scores in

cases of easy-wins and normal-wins are statistically significant

(p < 0.0001). The results indicate that when competing with

a stronger opponent (normal-win), drivers incline to strive for

a higher score. Therefore, one negative effect of a high easy-

win ratio is that it discourages drivers to exert more effort for

winning the competition.

To investigate the impact of easy-wins on the platform, we

plot the distributions of the total score of each pair of drivers

in the competition of City B (Fig. 2 right). In cases of easy-

wins, the total score equals the score of the winner. Hence the

distribution of the total score is the same as that of the winner’s

score. However, in cases of normal-wins, the distribution of

the total score notably moves to the right, meaning that the

drivers who fail also get non-negligible scores. The average

total score in cases of easy-wins is 4.93, whereas that in

cases of normal-wins is 10.74, more than twice the amount

of the former. Note that the cost of each win for the platform

is the same on average. Therefore, if the platform can turn

all easy-wins to normal-wins, the platform may obtain more

than twice the profit (due to more than twice the number of

completed trips) with the same cost. In other words, the return

on investment (ROI) for the platform will be higher. Thus the

results demonstrate another negative effect of a high easy-win

ratio: it decrease the ROIs of competitions for the platform.
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Fig. 2: Distributions of scores in cases of easy-wins and

normal-wins of the competition in City B.

3) Countermeasures to Easy-Win: Easy-wins occur if one

driver gets zero score. To reduce easy-wins, we analyze

the behaviors of 0-score drivers and the underlying reasons.

Most 0-score drivers were online for only several minutes

during a 3-hour round and about 85% of 0-score drivers were

never online in each round. Since no-shows comprise a large

proportion of 0-score drivers, we may conclude that most easy-

wins occur when drivers register for a certain competition but

do not show up when the competition actually takes place. One

way to mitigate easy-wins is to punish the no-show drivers.

However, it may also harm the motivation of the drivers

[29]. Alternatively, instead of changing competition rules (i.e.,
punishing no-show drivers), we propose to reduce easy-wins

by avoiding matching potential no-show drivers with drivers

who will show up in matchmaking.

4) Summary of Observations: There is a high easy-win

ratio (30% to 50%) in most competitions organized in Arena.

A high easy-win ratio impairs both the motivation of drivers

and the profit of the platform. To decrease easy-win ratio

without discouraging drivers, we choose to mitigate easy-

wins during matchmaking. Specifically, on observing that the

driver’s online time is an indicator to whether he/she will

participate in the competition, we propose to reduce easy-wins

by predicting the online time of drivers and avoiding matching

potential no-shows with drivers that will show up, as will be

elaborated on in the following.

IV. PREDICTION-BASED MATCHMAKING

In this section, we design a prediction-based matchmaking

scheme for Arena, where the core enabler is to predict the

duration of online time before matchmaking so as to avoid no-

shows and thus mitigate easy-wins. We first show the feasibil-

ity of predicting driver online time (Sec. IV-A), then explore

potential features for online time prediction (Sec. IV-B), as

well as the prediction model (Sec. IV-C), and finally present

our prediction-based matchmaking scheme (Sec. IV-D).

A. Regularity of Driver Online Time

Our prediction-based matchmaking scheme relies on the

assumption that drivers’ online time exhibits regular patterns

and thus tends to be predictable.

As an example, we randomly choose a driver who did not

complete any trip during R1 and R2 on June 7, 2018 in the

22

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 29,2021 at 03:29:58 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: Easy-win ratios of a competition held in City A.

Day Day 1 (Thur., June 7, 2018) Day 2 (Fri., June 8, 2018) Day 3 (Sat., June 9, 2018)
Total

Round R1 R2 R3 R4 R5 R6 R7 R8 R9

EW 57 75 80 99 112 115 90 111 120 859
Others 83 110 121 137 142 147 182 170 164 1256
EWR 0.4071 0.4054 0.3980 0.4195 0.4409 0.4389 0.3309 0.3950 0.4225 0.4061

EW: Easy-wins, EWR: Easy-win ratio.
Time of R1, R4, R7: 7:00-10:00. Time of R2, R5, R8: 16:00-19:00. Time of R3, R6, R9: 20:00-23:00.

May 10, 2018

May 17, 2018

May 24, 2018

May 31, 2018

June 7, 2018

00:00 06:00 12:00 18:00 24:00
Time

D
at

e Online

Offline

Fig. 3: Online time of a driver on 5 consecutive Thursdays.

The dashed lines represent the periods of two rounds.
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Fig. 4: Partial autocorrelation plots of six randomly sampled

drivers’ hourly online time in 30 days.

competition of City A shown in Table II. Then we plot the

online time of this driver on that day and 4 past consecutive

Thursdays, as shown in Fig. 3. The driver was almost always

offline in these two rounds; thus he/she could not get any

score in both rounds, allowing his opponents to enjoy an

easy-win. However, if we check his/her online records in the

past Thursdays, we can observe the regularity in the work

schedules of this driver: he/she often works by night and rests

by day. Using this driver’s historical online time records, we

may predict that the driver will not attend those two rounds

and avoid potential easy-wins.

Such regularity of online time is common among drivers.

Fig. 4 shows the partial autocorrelation plots of six randomly

sampled drivers’ hourly online time in 30 days. In these plots,

the maximum lag is set as 192 hours (8 days) for clarity, and

the dashed blue lines represent the 95% confidence interval

beyond which the autocorrelations are statistically significantly

different from zero. For most drivers, their online time has

significant correlation with that in the past days. Therefore, it

is feasible to predict drivers’ online time in the future based

on their online time records in the past. However, the patterns

vary across drivers as shown in the figure. Hence predicting

drivers’ online time is non-trivial and additional features are

necessary, as we will explain below.

B. Features for Driver Online Time Prediction

In addition to the historical online time of a driver, we

further explore multiple explainable features that may impact

a driver’s online time. We mainly extract features from public

data sources or drivers’ basic information accessible by the

ride-hailing platform. All the plots below are based on results

from 10,000 randomly sampled drivers in City D, where no

pilot study of Arena was launched.

1) Features from Public Datasets: Intuitively, time and

weather affect the schedule of drivers [30]. We explore the

following features from public time and weather datasets for

driver online time prediction.

• Day of the Week and Holiday. Fig. 5 shows the daily

average online time of sample drivers in 2017. The

data points corresponding to weekends and holidays are

marked in red. An obvious phenomenon is the weekly

periodicity in the online time of drivers. In most weeks,

the average online time stays at a relatively high level

during workdays and drops at weekends. The average

online time drops to the lowest level on Sunday for most

weeks. Apart from weekly periodicity, the weekends and

holiday effects can also be easily observed. Based on

these observations, we can conclude that drivers’ online

times are affected by day of the week and whether it is

a workday.

• Weather. Weather-related features such as temperature

and rainfall are also likely to affect the work schedules

of drivers. Due to the limit of data access, we only use

the weather data and online record data from April, 2018

to July, 2018. To reduce the effects of other factors, we

only analyze the online records of the sample drivers from

20:00 to 21:00 on all workdays. Fig. 6 shows the effect

of temperature and rainfall intensity on the online time of

drivers. As the temperature increases, the hourly average

online time of the sample drivers gradually decreases,
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which means drivers may be less willing to work when

it is too hot. Compared with temperature, the increase

of rainfall intensity does not affect the online time of

drivers as much probably because the records of moderate

rain and heavy rain are rare (only 3.57%). However, we

can still observe that compared with non-rainy hours, the

average online time of drivers drops when it rains. As

a result, we use both temperature and rainfall intensity

features in the prediction model.
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Fig. 6: Average online time per person per hour (ppph) of

sample drivers under different weather conditions.

2) Features from Drivers’ Basic Information: As is shown

in Sec. IV-A, the daily schedules of drivers may vary from

person to person. Hence it is necessary to account for driver-

specific features when predicting their online time. Due to the

limited access to driver information, we only explore two types

of basic information as candidate features.

• Age of driver. Fig. 7a shows the average hourly online

time of the sample drivers in different age groups in 2017.

We divide the sample drivers into four age groups. Drivers

older than 50 are the most active ones in the morning

and the least active ones at night compared with other

drivers. Similarly, drivers in their forties are also active

in the morning, but they stay working till evening. In

contrast, drivers younger than 40 are less active during

the day while their average online time increases in the

evening. At night, unsurprisingly, drivers in their twenties

are the most energetic. The trends on workdays and non-

workdays are similar except that the overall online time

on workdays is longer.

• Gender of driver. Fig. 7b plots the effects of gender on

the drivers’ online time on workdays and non-workdays
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Fig. 7: Average online time per person per hour (ppph) of

sample drivers of different driver-specific features.

in 2017. The difference between male drivers and female

ones is apparent. The average online time of male drivers

are consistently longer than female ones during a day no

matter whether it is a workday. The trends on different

days are similar except there is no clear peak in the

morning on non-workdays.

To summarize, time-dependent features include history on-

line time, time and weather information. More concretely, we

use the online time records of a driver in the same hour on

the same day during the last month and the average of them

as the history features. Time features are the attributes of a

specific time point itself, including hour, day of week, and

whether the day is a workday. Weather features include the

temperature and rainfall intensity in an hour. Driver-specific

features are features that are related to a specific driver, i.e.,
the gender and age range of the driver.

C. Prediction Model

We adopt Seq2Seq [12] model for driver online time pre-

diction. Fig. 8 illustrates the structure of the Seq2Seq model.

The Seq2Seq model consists of two parts, an encoder and a

decoder. For both the encoder and the decoder, we use gated

recurrent units (GRU) due to thier comparable performance to

long-short term memory (LSTM) units [31] and their training

efficiency as a result of the simpler structure.

The encoder first encodes the history sequence of a driver’s

online time in the past hours to a hidden state. At each time

step, the input for the encoder is a vector consisting of the

online time of the driver and other time-dependent features.

The hidden state produced by the encoder is then passed to

the decoder as its initial state. The decoder can recursively

generate an output for an hour in the future if it is fed with

an input. Its output is then concatenated with driver-specific

features and fed to a fully connected layer together which will

finally generate an estimated online time of the driver in the

next hour. In our model, the first input to the decoder is a

vector consisting of the last online time of the driver before

the time we predict and time-dependent features. The output

of the decoder will then be concatenated with time-dependent
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Fig. 8: An illustration of Seq2Seq model.

features of the next hour to be the next input to the decoder.

The fully connected layer serves as a correction to the output

of the decoder by incorporating driver-specific features. Given

the number of time steps to predict, the final outputs of our

model are the estimated online time of a given driver in the

future hours.

D. Prediction-Based Matchmaking: Putting It Together

Once we make predictions about the online time of the

registered drivers in the following hours of an upcoming round,

we can use that to match them into pairs together with their

ability information.

Algorithm 1 shows our prediction-based matchmaking algo-

rithm. For an upcoming round, we first divide the registered

drivers into groups according to their predicted total online

time in the round and the predefined bin width. For example,

if the round lasts for three hours and the bin width is 0.2 hours,

then we will have at most 15 groups of drivers, i.e., drivers

that are predicted to be online for less than 0.2 hours, drivers

that are predicted to be online for less than 0.4 hours but more

than 0.2 hour, etc. In each group, we rank drivers according

to their ability level (e.g., the number of completed trips in

the past 30 days in our experiments) and then iteratively pair

two drivers with a similar ability level together.

V. EVALUATION

This section presents the evaluations of our method based on

the data of real-world competitions organized among drivers.

We first introduce the experiment setup in Sec. V-A and then

describe the results of our evaluations in Sec. V-B.

A. Experiment Setup

Our evaluation is based on the data of two competitions

held in Cities D and A. Note that one competition was held

in a different city from those in the pilot study. Table III

summarizes the information of competitions. The competitions

cover different days, including workdays (e.g., Aug 6, 2018 to

Aug 8, 2018) and weekends (e.g., Dec 8, 2018 to Dec 9, 2018).

In the competition of City A, drivers can register for rounds

during different periods at will, and we report the number of

unique participants here.

Algorithm 1: Prediction-based matchmaking algo-

rithm
Data: Registered drivers for the next round, predicted

total online time of each driver, ability level of

each driver, bin width

Result: Matching M among drivers

1 Divide drivers into groups G1, · · · , Gn according to

their predicted total online time and the bin width;

2 Initialize the matching M ← ∅;
3 Initialize the candidate set C ← ∅;
4 for i in 1, · · · , n do
5 D ← sorted drivers in Gi according to their ability

levels;

6 while D still has at least two drivers do
7 Select two top-ranked drivers from D, add the

pair of them to M , and remove them from D;

8 if there is still one driver in D then
9 Add the driver in D to C;

10 C ← sorted drivers in C according to their predicted

total online time;

11 while C still has at least two drivers do
12 Select two top-ranked drivers from C, add the pair

of them to M , and remove them from C;

13 return M

TABLE III: Information of the real-world competitions where

different matchmaking methods are tested.

City Dates Rounds Participants

City D Aug 6, 2018 to Aug 8, 2018 9 3686
City A Dec 7, 2018 to Dec 9, 2018 9 5930

Based on existing data, we tested three matchmaking

schemes and evaluated the easy-win ratios under those match-

making schemes. Next we elaborate on how the experiments

were conducted.

1) Compared Methods: We compare the performance of

three matchmaking schemes.

• Baseline: It is a standard matchmaking algorithm without

exploiting the prediction of drivers’ online time. Specif-

ically, it first divides registered drivers into two groups

according to whether they are online when the algorithm

is executed. Then in each group, drivers are matched in

a similar way as Algorithm 1.

• RF: It is a prediction-based matchmaking scheme in-

tegrated with a simpler prediction model. RF adopts

the prediction-based matchmaking framework in Algo-

rithm 1, but uses random forest model to make predic-

tions. The model is trained using the features identified

in Sec. IV-B and drivers’ online time records in the last

720 hours. During prediction, the later predictions are

based on the former predictions and the weather features
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are extracted from weather forecast data. The random

forest model is implemented with scikit-learn [32], and

the number of trees and maximum depth of the tree are set

to 100 and 20, respectively. The bin width in Algorithm 1

is set to 0.2 hours.

• Seq2Seq (our method): It uses the Seq2Seq model in-

troduced in Sec. IV-C to predict the online time of

drivers in each hour of the future round and then follows

Algorithm 1 to match drivers. The training data is the

hourly online time records of all whitelist drivers in

the last two months before the competition and other

features described in Sec. IV-B. For each round, we

first use the trained model to predict the online time of

the registered drivers. The weather features used when

predicting are extracted from weather forecast data. Then

the matchmaking algorithm is executed based on the

predicted total online time of drivers to match them into

pairs. The bin width in Algorithm 1 is set to 0.2 hours.

2) Evaluation Metrics: We use easy-win ratio (EWR), i.e.,
the ratio between the number of easy-wins and total number

of driver pairs as defined in Sec. III, to assess the performance

of different algorithms.

3) Experiment Procedure: For each competition, we evenly

assign each driver a type and each algorithm only matches

drivers of a specific type. Since Seq2Seq and RF are both

prediction-based matchmaking schemes and Seq2Seq always

outperforms RF in the competition of City D, we only evaluate

Seq2Seq and Baseline in the competition of City A to test

them on a larger body of participants. Since our experiments

are based on existing data, we cannot measure the number

of completed trips of drivers when the matching is changed;

instead, we assume the number of completed trips of each

driver does not change even when the matching is different.

B. Experiment Results

1) Evaluations of Easy-Win Ratios: The overall perfor-

mance of each algorithm is shown in Fig. 9. In both com-

petitions, our method, Seq2Seq, can effectively reduce the

easy-win ratio compared with Baseline. The improvement of

Seq2Seq over Baseline is the more notable in the competition

held in City A where the easy-win ratio is almost halved.

Another prediction-based matchmaking algorithm, RF, also

achieves lower easy-win ratio than Baseline, which proves the

effectiveness of our proposed prediction-based matchmaking

scheme in reducing the easy-win ratio. However, Seq2Seq is

even better than RF indicating the superiority of the Seq2Seq

model. The easy-win ratios exhibit some variations across

different competitions, probably because they are held in

different time during different days.

Table IV shows the performance of each algorithm in the

competition held in City D. Compared with the ubiquitous

high easy-win ratio (about 40%) shown in Table II, the

Baseline algorithm that considers whether the driver is online

before each round begins can lower the easy-win ratio to

some extent, especially in the evening rounds (R2, R5, R8)

and night rounds (R3, R6, R9). However, in the morning

City D City A
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Fig. 9: Overall performance of compared algorithms.

rounds (R1, R4, R7), Baseline does not perform well, which

might be because that the round begins too early and many

drivers start working after the round begins. In other words,

whether a registered driver is online before a round begins

does not necessarily indicate whether he/she will actually show

up in that round later. Compared with Baseline, both RF and

Seq2Seq can further effectively reduce the easy-win ratios in

all rounds, which proves the effectiveness of our proposed

prediction-based matchmaking framework and the extracted

features. Furthermore, Seq2Seq consistently outperforms RF

in all nine rounds since Seq2Seq can make more accurate

predictions about the online time of the registered drivers.

In these rounds, Seq2Seq can reduce the easy-win ratio by

up to 5.03 percentage points (R4) compared with RF and

22.08 percentage points (R7) compared with Baseline, which

demonstrates the superiority of our method.

Table V shows the performance of Baseline and Seq2Seq

in the competition held in City A. It can be observed that the

easy-win ratios of Baseline are higher in the night rounds (R3,

R6, R9) compared with other rounds. A possible reason is that

many drivers do not work till that late but Baseline mistakenly

thinks they will show up in those rounds according to their

online status in an earlier time. In contrast, our method does

not suffer from the same problem, consistently reducing the

easy-win ratios in all rounds compared with Baseline since our

method does not solely take the online status of drivers before

each round begins as an indicator of whether they will actually

show up in the future round but instead predicts how long they

will be online in the future and match drivers with similar

online time together. The improvements of our method over

Baseline are notable for all rounds. Particularly, our method

reduces the easy-win ratio by up to 16.58 percentage points

(R3), more than half of the easy-win ratio of Baseline in

that round. The results demonstrate the effectiveness of our

prediction-based matchmaking algorithm.

2) Effect of Prediction Accuracy: Since our proposed

method relies on the predictions of drivers’ online time, we

further investigate the effect of prediction accuracy on the

performance of our method. Fig. 10 shows the relationship

between the prediction accuracy and the easy-win ratio of

our method. In this figure, the x-axis represents the ratio of

the mean absolute error (MAE) of the predicted drivers’ total
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TABLE IV: Performance evaluation on a competition held in City D from Aug 8, 2018 to Aug 10, 2018.

Algorithm
R1 (07:00-10:00) R2 (17:00-20:00) R3 (21:00-24:00)

EW Others EWR EW Others EWR EW Others EWR

Baseline 201 252 0.4437 150 340 0.3061 120 382 0.2390
RF 135 320 0.2967 144 347 0.2933 110 391 0.2196

Seq2Seq 123 331 0.2709 142 349 0.2892 94 407 0.1876

Algorithm
R4 (07:00-10:00) R5 (17:00-20:00) R6 (21:00-24:00)

EW Others EWR EW Others EWR EW Others EWR

Baseline 218 295 0.4250 177 363 0.3278 137 416 0.2477
RF 154 362 0.2984 148 392 0.2741 125 428 0.2260

Seq2Seq 128 388 0.2481 142 395 0.2644 108 445 0.1953

Algorithm
R7 (07:00-10:00) R8 (17:00-20:00) R9 (21:00-24:00)

EW Others EWR EW Others EWR EW Others EWR

Baseline 274 292 0.4841 193 417 0.3164 149 465 0.2427
RF 156 409 0.2761 168 441 0.2759 127 487 0.2068

Seq2Seq 149 417 0.2633 150 460 0.2459 113 502 0.1837

TABLE V: Performance evaluation on a competition held in City A from Nov 30, 2018 to Dec 2, 2018.

Algorithm
R1 (11:00-16:00) R2 (16:00-19:00) R3 (20:00-23:00)

EW Others EWR EW Others EWR EW Others EWR

Baseline 242 632 0.2769 180 723 0.1993 277 591 0.3191
Seq2Seq 346 1384 0.2000 193 1606 0.1073 263 1453 0.1533

Algorithm
R4 (11:00-16:00) R5 (16:00-19:00) R6 (20:00-23:00)

EW Others EWR EW Others EWR EW Others EWR

Baseline 260 641 0.2886 208 711 0.2263 279 603 0.3163
Seq2Seq 299 1484 0.1677 210 1623 0.1146 289 1462 0.1650

Algorithm
R7 (11:00-16:00) R8 (16:00-19:00) R9 (20:00-23:00)

EW Others EWR EW Others EWR EW Others EWR

Baseline 263 651 0.2877 205 723 0.2209 302 590 0.3386
Seq2Seq 301 1512 0.1660 189 1667 0.1018 351 1423 0.1979

online time in a round to the duration of the round, which

can reflect the prediction accuracy. In both competitions, we

can observe a strong correlation (the correlation coefficients

are both greater than 0.75) between the prediction perfor-

mance and the corresponding easy-win ratio. Based on this

observation, we can conjecture that the more accurate the

prediction model is, the lower easy-win ratio our proposed

prediction-based matchmaking scheme may achieve. This not

only testifies the rationality of our method, but also shows its

potential to further reduce the easy-win ratio by improving the

prediction model’s accuracy.

3) Summary of Experiment Results:

• Our proposed prediction-based framework and the

Seq2Seq model can almost consistently outperform Base-

line and RF with a notable reduction in the easy-win ratio.

• Our proposed method is effective in different cities dur-

ing different periods of time (from 07:00 to 24:00) on

different days (workdays and weekends).

• There are signs that the more accurate the predic-

tion model is, the lower easy-win ratio our proposed

prediction-based matchmaking scheme can achieve.
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Fig. 10: Relationship between the prediction accuracy and

EWR of our method. The correlation coefficients are annotated

above each plot.

VI. CONCLUSION

In this paper, we conduct the first-of-its-kind case study

to engage real-world drivers via competition. We design

Arena, a competition where drivers compete for prizes by

completing more trips. An initial deployment of Arena in

3 cities covering over 2,600 participants reveals the problem

of easy-win, a critical bottleneck for the effectiveness of
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adopting competition-based incentive mechanisms to motivate

drivers. We show that easy-wins are primarily caused by no-

shows in a competition and demonstrate that easy-wins may

weaken the motivating effect of competitions and decrease

the profit of the platform. To solve the problem, we design

a novel prediction-based matchmaking scheme based on the

observation that no-shows are highly correlated to the online

time of drivers. Our proposed method reduces the ratio of

easy-wins by avoiding matching potential no-show drivers

with drivers that will show up based on the predictions of

their online time in the future. Experiments conducted on real

competition data involving about 10,000 drivers demonstrate

that our proposed prediction-based matchmaking scheme can

reduce the easy-win ratio by up to over 20 percentage points

compared with the baseline method. We envision this study

will inspire practical guidelines for designing and deploying

competition-based incentive mechanisms in real-world spatial

crowdsourcing applications.
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[31] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” CoRR, vol.
abs/1412.3555, 2014.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

28

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on August 29,2021 at 03:29:58 UTC from IEEE Xplore.  Restrictions apply. 


		2021-07-06T07:00:36-0400
	Preflight Ticket Signature




